Code: 23CS3402, 23IT3402, 23AM3402, 23DS3402

II B.Tech - II Semester - Regular Examinations - MAY 2025

DATABASE MANAGEMENT SYSTEMS (Common for CSE, IT, AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

$BL-Blooms\ Level$

CO – Course Outcome

PART – A

		BL	CO
1.a)	List the role of database administrator.		CO1
1.b)	What is a Data model?		CO1
1.c)	List the design issues in ER diagrams.		CO1
1.d)	Define composite attribute.		CO1
1.e)	What is the purpose of relational algebra?		CO1
1.f)	What is the difference between drop and delete in		CO1
	SQL?		
1.g)	Write about Attributes and its Types.	L2	CO1
1.h)	What are the different problems caused by	L2	CO1
	redundancy?		
1.i)	List the types of serializability.		CO1
1.j)	Give an example for concurrency control	L2	CO1
	validation.		

PART - B

			BL	СО	Max. Marks	
	UNIT-I					
2	a)	Discuss the main characteristics of the	L2	CO1	5 M	
		database approach and how it differs				
		from traditional file systems.				
	b)	What are the data models in database	L2	CO1	5 M	
		system and explain with examples?				
	•	OR				
3	a)	Describe the three-schema architecture.	L2	CO1	5 M	
		Why do we need mappings between				
		schema levels?				
	b)	Explain the difference between Two-tier	L2	CO1	5 M	
		and Three-tier architectures. Which is				
		better suited for Web applications? why?				
1	UNIT-II					
4	a)	Explain the naming conventions and	L3	CO2	5 M	
	1)	notations used in ER diagram.	1.0	000	7 N 1	
	b)		L3	CO2	5 M	
		Entity Sets with examples.				
OR						
5	Dra		L4	CO4	10 M	
	Database, identify the key entities and the					
	rela	tionships between them.				

		UNIT-III			
6	Cor	nsider the following tables:	L4	CO4	10 M
	Student_Details (Reg_no, Name, Address,				
	Phone_No, Grade)				
	Project_Details (Project_Code,				
	Project_Name, Project_Cost)				
	Student_Project (Reg_No, Project_Code)				
	i.	Write SQL statement to create SQL tables with suitable integrity constraints.			
	ii.	Write SQL statement to retrieve the names of the students who works on			
		more than one project. OR			
7	a)	Enumerate various select and projection	L3	CO2	5 M
,		operations on relations with relational			0 1/1
		algebra.			
	b)	Discuss various set operations in	L3	CO2	5 M
		relational algebra with examples.			
		UNIT-IV			
8	a)	Explain the process of decomposition	L3	CO3	5 M
		using multivalued dependencies with			
		suitable example.			
	b)	Define normalization. Why do we need	L3	CO3	5 M
		to normalize the database?			
OR					
9	a)	Describe the process of normalization in	L3	CO3	5 M
		order to set the database to 3rd normal			
		form.			

	b)	Write about loss-less join decomposition	L3	CO3	5 M		
		with an example.					
	UNIT-V						
10	Exp	olain in detail about transaction	L2	CO1	10 M		
	maı	nagement with an example.					
	OR						
11	a)	What is concurrency control? Explain	L2	CO1	5 M		
	two phase locking protocol with an						
		example.					
	b)	Give a note on log based recovery.	L2	CO1	5 M		